Abstract

AbstractKinetic resolution of some chiral secondary alcohols [2‐octanol, 1‐phenylethanol, and 1‐(2‐naphthyl)ethanol] with high enantioselectivity (E>300) was achieved by direct esterification with FFA catalyzed by immobilized Candida antarctica B lipase. The reaction equilibrium was shifted toward the synthetic side by the removal of the water formed under vacuum. Esterification of rac‐2‐octanol at an alcohol/FFA molar ratio of 2∶1 was used as a model reaction. The chain length of FFA and their structure influenced the reaction rate but did not have a measureable effect on E. The best acyl donor was decanoic acid: >47% conversion at 4 h with virtually perfect E. Temperature did not affect E in the range studied (15–45°C), but temperatures at the higher end afforded improved reaction rates. The reaction rates and E were compared for three different acyl donors. The initial reaction rate increased in the following order: ethyl laurate < lauric acid < vinyl acetate. E was high (E>300) for all acyl donors. Racemic 1‐phenylethanol and 1‐(2‐naphthyl)ethanol were also resolved by direct esterification with decanoic acid in short times (3 and 4 h, respectively) with E>300 and excellent conversions. Preparative‐scale kinetic resolution of 2‐octanol was also performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.