Abstract

BackgroundJapanese encephalitis virus (JEV), a member of the Flaviviridae family, causes around 68,000 encephalitis cases annually, of which 20–30% are fatal, while 30–50% of the recovered cases develop severe neurological sequelae. Specific antivirals for JEV would be of great importance, particularly in those cases where the infection has become persistent. Being indispensable for flaviviral replication, the NS2B-NS3 protease is a promising target for design of anti-flaviviral inhibitors. Contrary to related flaviviral proteases, the JEV NS2B-NS3 protease is structurally and mechanistically much less characterized. Here we aimed at establishing a straightforward procedure for cloning, expression, purification and biochemical characterization of JEV NS2B(H)-NS3pro protease.Methodology/Principal FindingsThe full-length sequence of JEV NS2B-NS3 genotype III strain JaOArS 982 was obtained as a synthetic gene. The sequence of NS2B(H)-NS3pro was generated by splicing by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro, expressed in E. coli as soluble protein, was purified to >95% purity by a single-step immobilized metal affinity chromatography. SDS-PAGE and immunoblotting of the purified enzyme demonstrated NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 36, 21, and 10 kDa bands, respectively. Kinetic parameters, K m and k cat, for fluorogenic protease model substrates, Boc-GRR-amc, Boc-LRR-amc, Ac-nKRR-amc, Bz-nKRR-amc, Pyr-RTKR-amc and Abz-(R)4SAG-nY-amide, were obtained using inner filter effect correction. The highest catalytic efficiency k cat /K m was found for Pyr-RTKR-amc (k cat/K m: 1962.96±85.0 M−1 s−1) and the lowest for Boc-LRR-amc (k cat/K m: 3.74±0.3 M−1 s−1). JEV NS3pro is inhibited by aprotinin but to a lesser extent than DEN and WNV NS3pro.Conclusions/SignificanceA simplified procedure for the cloning, overexpression and purification of the NS2B(H)-NS3pro was established which is generally applicable to other flaviviral proteases. Kinetic parameters obtained for a number of model substrates and inhibitors, are useful for the characterization of substrate specificity and eventually for the design of high-throughput assays aimed at antiviral inhibitor discovery.

Highlights

  • Japanese encephalitis virus (JEV) is a mosquito borne flavivirus that causes severe central nervous system diseases such as an acute flaccid paralysis, aseptic meningitis and encephalitis [1]. It belongs to the genus Flavivirus which comprises over 70 viruses many of which are human pathogens, including West Nile virus (WNV), Dengue virus (DEN), Yellow fever virus (YFV), Murray Valley Encephalitis Virus (MVEV), Kunjin Virus (KUNV) and Tick-Borne Encephalitis Virus (TBEV) [2]

  • The complete sequence of the cloned JEV NS2B(H)NS3pro was analyzed by automated DNA sequencing in both forward and reverse directions, and resulting sequences were compared to the nucleotide sequence of JEV genotype III strain JaOArS 982 [Genebank accession number M18370.1]

  • In this study we report a straightforward procedure for producing recombinant JEV NS2B(H)-NS3pro protease by overexpression in E. coli followed by an one-step purification procedure, and we report the kinetic parameters of the protease for commercially available synthetic fluorogenic model peptide substrates and serine protease inhibitors

Read more

Summary

Introduction

Japanese encephalitis virus (JEV) is a mosquito borne flavivirus that causes severe central nervous system diseases such as an acute flaccid paralysis, aseptic meningitis and encephalitis [1]. It belongs to the genus Flavivirus (family Flaviviridae) which comprises over 70 viruses many of which are human pathogens, including West Nile virus (WNV), Dengue virus (DEN), Yellow fever virus (YFV), Murray Valley Encephalitis Virus (MVEV), Kunjin Virus (KUNV) and Tick-Borne Encephalitis Virus (TBEV) [2]. Japanese encephalitis virus (JEV), a member of the Flaviviridae family, causes around 68,000 encephalitis cases annually, of which 20–30% are fatal, while 30–50% of the recovered cases develop severe neurological sequelae. We aimed at establishing a straightforward procedure for cloning, expression, purification and biochemical characterization of JEV NS2B(H)-NS3pro protease

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.