Abstract

We analyze the transient nonclassical behaviour of a single-mode field whose interaction with an environment is governed by the quantum optical master equation. Our analytic method makes use of the generalized characteristic function of the field state. First, we find a time at which all squeezing effects disappear by decoherence regardless of the initial state of the mode. In the case of an input even coherent state, an unusual modification of higher-order squeezing at low values of thermal mean occupancy transferred to the field is found and discussed. For the same initial state, we also perform a comprehensive analysis of the mixing process during the interaction with the reservoir. We prove that a maximum in the evolution of the 2-entropy of the attenuated mode exists on condition that its initial mean photon number exceeds the mean occupancy of the reservoir. This transient mixing enhancement can be considered as a quantum effect of the initial state on the mode damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.