Abstract

Hydrotalcite, also known as aluminum-magnesium layered double hydroxide (LDH) or anionic clay, is a synthetic compound that was broadly investigated in the past decade due to its many potential applications. In this work, we present an environmentally benign process for the transesterification (methanolysis) of neem oil to fatty acid methyl esters (FAME) using Zn-Mg-Al hydrotalcites as solid base catalysts in a heterogeneous manner. The catalysts were characterized by XRD, FT-IR, TPD-CO2, and the BET surface area analysis. It is well-known that the catalytic performance of hydrotalcite is dramatically increased through the incorporation of Zn into the surface of Mg-Al hydrotalcite material. The optimized parameters, 10 : 1 methanol/oil molar ratio with 7.5 g catalysts reacted under stirring speed 450 rpm at 65°C for 4 h reaction, gave a maximum ester conversion of 90.5% for the sample with Zn-Mg-Al ratio of 3 : 3 : 1.

Highlights

  • Biodiesel is a promising nontoxic and biodegradable renewable fuel comprised of monoalkyl esters of long chain fatty acids, which are derived from vegetable oils or animal fats [1]

  • Neem oil was selected as a nonedible feedstock for biodiesel production

  • Neem oil was purchased from local market, chemicals such as Zn(NO3)2⋅6H2O, Mg(NO3)2⋅6H2O, and Al(NO3)3⋅9H2O were purchased from Merck, and methanol, NaOH, and Na2CO3 were purchased from Sigma Aldrich

Read more

Summary

Introduction

Biodiesel is a promising nontoxic and biodegradable renewable fuel comprised of monoalkyl esters of long chain fatty acids, which are derived from vegetable oils or animal fats [1]. It has attracted attention during the past few years as a renewable and environmental friendly fuel. 60–80% of the total biodiesel production cost is attributed to biodiesel feedstock. Using cheaper feedstock, such as nonedible oil, animal fats, untreated crude edible oil, or waste cooking oil, has been suggested to lower the feedstock cost [3,4,5]. Neem oil was selected as a nonedible feedstock for biodiesel production

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.