Abstract

Motivated by the fact that characteristics of different sound classes are highly diverse in different temporal scales and hierarchical levels, a novel deep convolutional neural network (CNN) architecture is proposed for the environmental sound classification task. This network architecture takes raw waveforms as input, and a set of separated parallel CNNs are utilized with different convolutional filter sizes and strides, in order to learn feature representations with multi-temporal resolutions. On the other hand, the proposed architecture also aggregates hierarchical features from multi-level CNN layers for classification using direct connections between convolutional layers, which is beyond the typical single-level CNN features employed by the majority of previous studies. This network architecture also improves the flow of information and avoids vanishing gradient problem. The combination of multi-level features boosts the classification performance significantly. Comparative experiments are conducted on two datasets: the environmental sound classification dataset (ESC-50), and DCASE 2017 audio scene classification dataset. Results demonstrate that the proposed method is highly effective in the classification tasks by employing multi-temporal resolution and multi-level features, and it outperforms the previous methods which only account for single-level features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.