Abstract

With the introduction of correlation filtering (CF), the performance of visual object tracking is significantly improved. Circular shifts collecting samples is a key component of the CF tracker, and it also causes negative boundary effects. Most trackers add spatial regularization to alleviate boundary effects well. However, these trackers ignore the effect of environmental changes on tracking performance, and the filter discriminates poorly in the background interference. Here, to break these limitations, we propose a new correlation filter model, namely Environmental Perception with Spatial Regularization Correlation Filter for Visual Tracking. Specifically, we use the Average Peak to Correlation Energy (APCE) and the response value error between the two frames together to perceive environmental changes, which adjusts the learning rate to make the template more adaptable to environmental changes. To enhance the discriminatory capability of the filter, we use real background information as negative samples to train the filter model. In addition, the introduction of the regular term destroys the closed solution of CF, and this problem can be effectively solved by the use of the alternating direction method of multipliers (ADMM). Extensive experimental evaluations on three large tracking benchmarks are performed, which demonstrate the good performance of the proposed method over some of the state-of-the-art trackers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.