Abstract

Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving.

Highlights

  • The human brain collates, integrates, and binds basic sensory inputs that result in our capacities to think, reason, and perform at high levels (Waltz et al, 1999; Kalbfleisch et al, 2006, 2007)

  • The key question is how do we identify and trace neural systems of reasoning that are engaged during psychometric tests and controlled in neuroimaging paradigms to better appreciate how these systems evolve and support more naturalistic knowledge about cognition (Pylyshyn, 1999; Mahon and Caramazza, 2009; Schwarzkopf et al, 2009)? relating to our experimental design and the opportunity to connect a neural result with a meaningful outcome for education and measurement, we aim to understand more about how and/or why certain visual properties or heuristics are enlisted during matrix reasoning because it serves as a proxy measure of intellectual capacity (Kalbfleisch, 2004)

  • Each subject’s participation consisted of one visit to the laboratory and involved three parts: a confirmatory MRI safety and compliance screening by the technologist, a brief practice session with the task using problem trials separate from the problems they solved in the scanner, and ∼1 h in the MRI scanner including time for the subject to be comfortably positioned in the scanner, to acquire structural brain scans needed for data analysis, and to have the participant perform three runs of the functional task described below

Read more

Summary

Introduction

The human brain collates, integrates, and binds basic sensory inputs that result in our capacities to think, reason, and perform at high levels (Waltz et al, 1999; Kalbfleisch et al, 2006, 2007). Constructivism is a learning theory that contends we construct knowledge best by experience and that our environment and the context it provides is a central determinant in the quality of our learning It holds within it such principles as “scaffolding,” “the zone of proximal development,” and the “genetic epistemology” that have influenced the fields of educational psychology and the learning sciences for decades (Vygotsky, 1928; Bruner, 1960, 1990; Piaget, 1970). Neuroscience has examined the means by which experience impacts gray matter change (Diamond et al, 1975, 1976; Quartz and Sejnowski, 1997), there is a paucity of evidence for the consequences of specific environmental influence on functional neuroplasticity during higher-level reasoning

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.