Abstract

Recently, fuel cell combined heat and power systems (FC-CGSs) for residential applications have received increasing attention. The International Electrotechnical Commission has issued a technical specification (TS 62282-9-101) for environmental impact assessment procedures of FC-CGSs based on the life cycle assessment, which considers global warming during the utilization stage and abiotic depletion during the manufacturing stage. In proton exchange membrane fuel cells (PEMFCs), platinum (Pt) used in the catalyst layer is a major contributor to abiotic depletion, and Pt loading affects power generation performance. In the present study, based on TS 62282-9-101, we evaluated the environmental impact of a 700 W scale PEMFC-CGS considering cathode catalyst degradation. Through Pt dissolution and Ostwald ripening modeling, the electrochemical surface area transition of the Pt catalyst was calculated. As a result of the 10-year evaluation, the daily power generation of the PEMFC-CGS decreased by 11% to 26%, and the annual global warming value increased by 5% due to the increased use of grid electricity. In addition, when Pt loading was varied between 0.2 mg/cm2 and 0.4 mg/cm2, the 10-year global warming values were reduced by 6.5% to 7.8% compared to the case without a FC-CGS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.