Abstract

Electrospun phase change fiber (PCF) releases more than 85 wt% of organic solvents yet suffers from long-term thermal cycling-induced leakage. In this contribution, a novel PEG/PVA composite PCF was obtained by electrospinning their aqueous solution instead of using organic solvent in traditional method, which makes design of PCF towards green and cost-effective direction. Meanwhile, a simple surface crosslinking technology was applied to prevent leakage of PEG during the long-term service, and improve the thermal stability and tensile strength of the obtained crosslinked PCF (CPCF). The CPCF-50 shows the optimal morphological structure and exhibits the a relative high latent heat of 72.3 J/g. Owing to the confinement effect, CPCF exhibits robust thermal, chemical, and morphological stability with respect to 1000 thermal cycling. The CPCF also shows exceptional temperature regulation capability. The thermoregualting times of heating and freezing processes of CPCF-50 are 59.0% and 89.5% longer than those of the control and CPCF-0, respectively. Therefore, the eco-friendly and cost-effective prepared CPCF in this work, which exhibits relatively high latent heat and long-term reliability, paves a new way for the large-scale production of phase change fiber for thermal energy storage application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.