Abstract

Abstract The interaction between Typhoon Nepartak (2016) and the upper-tropospheric cold low (UTCL) is simulated to better understand the impact of UTCL on the structural and intensity change of tropical cyclones (TCs). An experiment without UTCL is also performed to highlight the quantitative impacts of UTCL. Furthermore, idealized sensitivity experiments are carried out to further investigate the specific TC–UTCL configurations leading to different interactions. It is shown that a TC interacting with the UTCL is associated with a more axisymmetric inner-core structure and an earlier rapid intensification. Three plausible mechanisms related to the causality between a UTCL and the intensity change of TC are addressed. First, the lower energy expenditure on outflow expansion leads to higher net heat energy and intensification rate. Second, the external eddy forcing reinforces the secondary circulation and promotes further TC development. Ultimately, the shear-induced downward and radial ventilation of the low-entropy air is unexpectedly reduced despite the presence of UTCL, leading to stronger inner-core convections in the upshear quadrants. In general, the TC–UTCL interaction process of Nepartak is favorable for TC intensification owing to the additional positive effect and the reduced negative effect. In addition, results from sensitivity experiments indicate that the most favorable interaction would occur when the UTCL is located to the north or northwest of the TC at a stable and proper distance of about one Rossby radius of deformation of the UTCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.