Abstract

Irrigation and tillage practice alternatives to conventional flooding production, with or without organic amendments, are attracting great interest to adapt rice cultivation to climate change. However, they can alter the behaviour of pesticides and their efficiency against weeds. A two-year field experiment was conducted to investigate how the environmental fate and the weed control efficiency (WCE) of bispyribac‑sodium (BS) were influenced by biochar produced from holm oak prunings (BHO) testing both the fresh and the aged effects. The treatments were: flooding irrigation and tillage (FT), sprinkler irrigation and tillage (ST), sprinkler irrigation and no-tillage (SNT), and the corresponding homologues with BHO addition (FT-BHO, ST-BHO, and SNT-BHO, respectively). Fresh BHO amendment decreased the sorption of BS onto the soil in all treatments, while, after aging, it also decreased sorption in FT-BHO (1.3-fold) but increased it in SNT-BHO and ST-BHO (1.1-fold). BHO addition reduced BS persistence under non-flooding and flooding incubation conditions, except for FT under the former condition for which t1/2 increased ≈1.5-fold in both years. The addition of BHO led to a decrease in BS leaching from 58.3 % and 44.6 % and from 70.4 % and 58.1 % in ST and FT to 50.1 % and 38.3 % and 63.6 % and 50.3 % in the homologue amended soils for the fresh and aged years, respectively. While fresh BHO addition decreased the WCE of BS in SNT-BHO, ST-BHO, and FT-BHO on average by a factor of 1.5, with aged BHO there was only such a decrease (by a factor of 1.4) in FT-BHO. The use of BHO could be effective for reducing water contamination by BS in flooding or sprinkler irrigation rice farming as long as conventional tillage is used. But it may also contribute to greatly reducing the herbicide's efficiency, although with time to allow aging, this reduction would only persist under conventional flooding production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.