Abstract

Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500m to the mid-alpine region at 900m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.