Abstract

Laboratory-based studies have shown that ozone and nitrogen dioxide can potentiate the effect of allergen in sensitized asthmatic subjects, but it is not known whether this interaction is important under natural exposure conditions. Thirty-five subjects with clinical diagnoses of asthma or chronic obstructive pulmonary disease and with a provocative dose causing a 20% fall in forced expiratory volume in one second methacholine <12.25 micromol (using the Yan method) kept peak expiratory flow (PEF) records for a 4-week period during late summer, with concurrent measurement of spore and pollen counts and pollution levels. Multiple regression analysis was then used to determine the effect on PEF of aeroallergen, and of the interaction between aeroallergen and pollutant levels. A statistically significant interaction was demonstrated between total spore count and ozone, but not nitrogen dioxide. Mean PEF fell in association with increasing spore count (same-day and 24-h lag level) and PEF variability increased with increasing spore count (24-h lag level only); both changes were greater the higher the prior ozone level. These results suggest that ozone can potentiate the effect of aeroallergens in subjects with bronchial hyperreactivity under natural exposure conditions. However, the effect was small, and the clinical significance of the interaction requires further study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.