Abstract
This article examines a methodology to illustrate the emissions reduction potential by a base-loaded combined heating and power (CHP) system in a given building across different US regions. In addition, the size of the prime mover that may potentially reduce the carbon dioxide emissions is determined. The potential carbon dioxide emission savings from a CHP system considers the ratio of emissions conversion factors applied to imported electricity to emissions conversion factors applied to fuel consumed Results indicate that to be able to achieve savings in carbon dioxide emissions, must be larger than a unique constant that only depends on the CHP components efficiencies. A hospital benchmark building developed by the Department of Energy in different climate conditions was used as an example to apply the methodology presented in this article. The effects of the CHP power generation unit (PGU) size and the CHP system efficiency on carbon dioxide emissions are also considered, and a range of possible values for PGU size and emissions reductions are presented. Results indicate that one of the main variables that affect the potential of a CHP system to reduce carbon dioxide emission is the efficiency of PGU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Ambient Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.