Abstract

An evaluation of the environmental impacts of an air-conditioning system which uses a bore-hole system for heating and cooling is the aim of this case study. To facilitate the evaluation, the bore-hole based air-conditioning system is compared with a reference system that uses a more traditional source of heat (district heating) and cooling energy (refrigeration). Environmental impacts of the system are examined by the life cycle assessment (LCA) method, including the weighting step. Results show that the bore-hole based system performs better in three of the four impact categories investigated: acidification, eutrofication, and global warming potential (GWP) with a 100-year horizon. This is mainly due to the fact that it uses less material in the production phase and less operating energy during the user stage. However, in the category of photochemical ozone creation potential (POCP), it performs four times worse than the more traditional system. Nevertheless, the overall environmental impact of the bore-hole based system, evaluated by common weighting methods, is better than the more traditional system. The most dominant environmental impact of both systems arises from the operating energy, although the energy use in the building studied is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.