Abstract

Effects of temperature and contaminant levels on the high-temperature corrosion of superalloys used in gas turbines were investigated using pressurized passages which simulate the operating conditions of present-day gas turbines. The alloys were tested in a cooled configuration realistically simulating the air-cooled vanes and blades of a gas turbine. Conclusions are drawn as to the permissible level of contaminants and the effect of metal cooling on high-temperature corrosion. It is shown that the surface temperature of a blade or vane rather than the gas-stream temperature is the critical factor in determining the amount of attack to be expected at a given contaminant level and the amount of attack is an exponential function of this temperature. Furthermore, in a dynamic-type test no decrease in corrosion rate is noted at higher temperatures. It was concluded that the use of a 5 ppm Na/2 ppm V fuel would result in an excessive amount of attack with a metal surface temperature of 1500 deg F.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.