Abstract

The use of fuel cell (FC) is considered one of the methods of producing electricity with relatively high efficiency. So, it has attracted many researchers' attention to develop and improve its performance. The present study deals with the technical-economic optimal design of a hybrid power generation system based on a Proton Exchange Membrane (PEM) FC combined with an Organic Rankine Cycle (ORC). ORC is used to recover the generated heat in PEM FC. The decision variables of this study include FC operating pressure and temperature, current density, FC area, the quantity of FC, and operating parameters of the ORC system, including HRVG PPTD, condenser PPTD, and refrigerant mass fraction in zeotropic mixture. In this study, three zeotropic mixtures, including R11-R245fa, R11-R123, and R123-R245fa, are studied as the working fluid of the ORC system. The objective functions considered to be optimized are the system's exergy efficiency and total cost rate (TCR). Finally, it is observed that the highest exergy efficiency is obtained using the zeotropic mixture R11-R245fa with a value of 54.15%, and the lowest TCR is obtained with the mixture R11-R123 with a value of 0.65 $/s. Zeotropic mixture R11-R123 has the exergoenvironmental index, environmental damage effectiveness index, and exergy stability factor of 0.5506, 1.277, and 0.4750, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.