Abstract

Powder samples of pure BaAl2O4 and doped with 4.9 atom % Eu in relation to Ba were prepared by a hydrothermal route. The samples were characterized by X-ray diffraction, 151Eu Mössbauer spectroscopy, synchrotron-based X-ray absorption spectroscopy at the Ba L3- and Eu L3-edges, and photoluminescence measurements. Diffraction lines were broadened, indicating that the samples were nanocrystallline. The samples possessed a hexagonal crystal structure, space group P63. 151Eu Mössbauer spectroscopy revealed the presence of Eu in the 3+ oxidation state. The same information on the Eu oxidation state was also obtained by the Eu L3-edge X-ray absorption near-edge structure of the doped sample. Extended X-ray absorption fine structure showed an Eu3+ ion substituted for Ba2+ on the Ba2 site in the BaAl2O4 host structure, with charge compensation by an interstitial O in the vicinity of the Ba2 site. That was confirmed by a Rietveld structure refinement for the Eu-doped BaAl2O4 sample. Analysis of the diffraction line broadening for the prepared samples was performed simultaneously with the structure refinement. Both the dopant Eu3+ and the interstitial O acted as defects in the host BaAl2O4 lattice, which increased the lattice strain from 0.02% for pure BaAl2O4 to 0.17% for the Eu-doped sample. Crystallite sizes in the samples increased with Eu doping from 32 nm for pure BaAl2O4 to 36 nm for Eu-doped BaAl2O4. This could likely be related to the increase in the diffusion rate of the cations in the sample when a part of the Ba2+ cation content was exchanged with smaller Eu3+ cations. The Eu-doped BaAl2O4 sample exhibited red photoluminescence under excitation with λexc = 308 nm. The observed emission spectrum indicated that Eu3+ ions occupied the Ba site with lower symmetry in the doped sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.