Abstract
Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also. An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential. Among all the synthesized compounds, 4a, 4c, and 4d displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC50 values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC50 = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition. Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.