Abstract

In this work, we address the joint design of the wireless backhauling network topology as well as the frequency/power allocation on the wireless links, where nodes are capable of full-duplex (FD) operation. The proposed joint design enables the coexistence of multiple wireless links at the same channel, resulting in an enhanced spectral efficiency. Moreover, it enables the usage of FD capability when/where it is gainful. In this regard, a mixed-integer-linear-program (MILP) is proposed, aiming at a minimum cost design for the wireless backhaul network, considering the required rate demand at each base station. Moreover, a re-tunning algorithm is proposed which reacts to the slight changes in the network condition, e.g., channel attenuation or rate demand, by adjusting the transmit power at the wireless links. In this regard, a successive inner approximation (SIA)- based design is proposed, where in each step a convex subproblem is solved. Numerical simulations show a reduction in the overall network cost via the utilization of the proposed designs, thanks to the coexistence of multiple wireless links on the same channel due to the FD capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.