Abstract

This paper presents a new technique to reduce the peak-to-average power ratio (PAPR) of the RF input signals used in envelope tracking (ET) power amplifiers without degrading the linearity and efficiency performance of the RF stages. Due to heavy gain compression, ET amplifiers can suffer from inefficient driver stages. The reduced PAPR RF input signal improves the efficiency of the driver amplifier thereby potentially improving the overall efficiency of the ET amplifier. This technique is demonstrated for a single carrier WCDMA signal using a dynamic supply modulator and a RF stage based on a GaAs HVHBT. The measurement shows that a power added efficiency (PAE) of 74% can be maintained for the RF stage while the PAPR of the RF input signal is reduced from 7.6 dB to 5.2 dB. The overall PAE accounting for the supply modulator is greater than 50% with an average output power of greater than 26 W and an adjacent channel leakage ratio of less than -45 and -53 dBc at 5- and 10-MHz frequency offsets, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.