Abstract

A plane graph is called symmetric if it is invariant under the reflection across some straight line. We prove a result that expresses the number of perfect matchings of a large class of symmetric graphs in terms of the product of the number of matchings of two subgraphs. When the graph is also centrally symmetric, the two subgraphs are isomorphic and we obtain a counterpart of Jockusch's squarishness theorem. As applications of our result, we enumerate the perfect matchings of several families of graphs and we obtain new solutions for the enumeration of two of the ten symmetry classes of plane partitions (namely, transposed complementary and cyclically symmetric, transposed complementary) contained in a given box. Finally, we consider symmetry classes of perfect matchings of the Aztec diamond graph and we solve the previously open problem of enumerating the matchings that are invariant under a rotation by 90 degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.