Abstract
In this paper we propose to employ entropy-constrained predictive coding for lossy compression of SAR raw data. We exploit the known result that a blockwise normalized SAR raw signal is a Gaussian stationary process in order to design an optimal decorrelator for this signal. The proposed predictive coding algorithm performs entropy-constrained quantization of the prediction error, followed by entropy coding; the algorithm exhibits a number of advantages, and notably a very high performance gain, with respect to other techniques such as FBAQ or methods based on transform coding. Simulation results on real-world SIR-C/X-SAR as well as simulated raw and image data show that the proposed algorithm significantly outperforms FBAQ as to SNR, at a computational cost compatible with modern SAR systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.