Abstract

Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.