Abstract

In this article investigation has been conducted on the effects of Hall parameter, rotation parameter and Joule heating on the entropy generation of fully developed electrically conducting Poiseuille flow. The coupled system of ordinary differential equations for the flow are obtained, non-dimensionalised and solutions are constructed by Adomian decomposition technique. The effects of Hall current, Ion-slip, Joule heating and magnetic parameters on the velocity, temperature, entropy generation and Bejan number are explained and shown graphically. The results indicate that fluid entropy generation is induced by increase in Hall current, rotation and Joule heating parameters. Furthermore Bejan number is accelerated by Hall current, rotation, Magnetic and Joule heating parameters which signifies that heat transfer irreversibility dominates entropy generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.