Abstract
The present work investigates the combined effects of thermophoresis, Brownian motion and variable viscosity on entropy generation in an unsteady flow of water-based nanofluids confined between two parallel plates with convective heat exchange with the ambient surrounding at the walls. Both first and second laws of thermodynamics are applied to analyse the problem. The nonlinear governing equations of continuity, momentum, energy, and nanoparticles concentration are tackled numerically using a semi-discretisation finite-difference method together with a Runge–Kutta–Fehlberg integration scheme. Numerical results for velocity, temperature, and nanoparticles concentration profiles are obtained and utilised to compute the skin friction, the Nusselt number, the entropy generation rate, the irreversibility ratio, and the Bejan number. Pertinent results are displayed graphically and discussed quantitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.