Abstract

PurposeThis paper aims to focus on the steady state flow of nanoliquid through microchannel with the aid of internal heat source and different shapes of nanoparticle. The influence of MoS2 and TiO2 particles of nano size on flow and thermal fields is examined. The governing equations are modelled and then solved numerically. The obtained physical model is nondimensionalized using dimensionless quantities. The nondimensional equations are treated with numerical scheme. The outcome of the current work is presented graphically. Diverse substantial quantities such as entropy generation, Bejan number and Nusselt number for distinct parameters are depicted through graphs. The result established that nanoparticle of blade shape acquires larger thermal conductivity. Entropy analysis is carried out to explore the impact of various parameters such as nanoparticle volume fraction, magnetic parameter, radiation parameter and heat source parameter.Design/methodology/approachThe resultant boundary value problem is converted into initial value problem using shooting scheme. Then the flow model is resolved using Runge-Kutta-Fehlberg-Fourth-Fifth order technique.FindingsIt is emphasized that entropy generation for the fluid satisfies N(ζ)(TiO2−water) > N(ζ)(MoS2−water). In addition to this, it is emphasized that N(ζ)sphere > N(ζ)brick > N(ζ)cylinder > N(ζ)platelet > N(ζ)blade. Also, it is obtained that blade-shaped nanoparticle has higher thermal conductivity for both MoS2 and TiO2.Originality/valueShape effects on Molybdenum disulphide and TiO2 nanoparticle in a microchannel with heat source is examined. The analysis of entropy shows that N(ζ)(TiO2−water) > N(ζ)(MoS2−water).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.