Abstract

Entropy generation of nanofluids between two stretching rotating discs under the effect of magnetohydrodynamic (MHD) and thermal radiation is examined in this work. In this paper, Ethylene glycol (CH2oH)2 is used as based fluid and Carbon nanotubes (CNTs), which include both single-walled carbon nanotube (SWCNT) and multiwall cabin nanotube (MWCNT), are used as nanoparticles. The nonlinear governing equations are solved using the Runge-Kutta method and the effects of the radiation parameter, magnetic field, porosity, suction/injection and Brinkman number on skin friction coefficient and Nusselt number are investigated. Additionally, the effects of these parameters on total entropy generation and the Bejan number are explored. The results are compared to two different nanoparticles and the results showed that the total entropy generation rises with increasing the thermal radiation and volume fraction of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.