Abstract

The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assemblydisassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.