Abstract

In this paper, considering time-averaged velocity as a random variable, two-dimensional (2D) velocity distributions in open-channel flow have been derived based on the Shannon entropy concept and the principle of maximum entropy. The velocity distributions so derived have limited practical use, since they contain too many parameters that need to be experimentally calibrated and hence are not convenient to apply. This work develops a new entropy-based approach for deriving a 2D velocity distribution in open-channel flow, thereby investigating a rectangular geometric domain. The derived distribution is parsimonious, and the values determined using the proposed distribution are found to be in good agreement with the experimentally-measured velocity values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.