Abstract
This work studies the entropic regularization formulation of the 2-Wasserstein distance on an infinite-dimensional Hilbert space, in particular for the Gaussian setting. We first present the minimum mutual information property, namely, the joint measures of two Gaussian measures on Hilbert space with the smallest mutual information are joint Gaussian measures. This is the infinite-dimensional generalization of the maximum entropy property of Gaussian densities on Euclidean space. We then give closed-form formulas for the optimal entropic transport plan, entropic 2-Wasserstein distance, and Sinkhorn divergence between two Gaussian measures on a Hilbert space, along with the fixed point equations for the barycenter of a set of Gaussian measures. Our formulations fully exploit the regularization aspect of the entropic formulation and are valid both in singular and in nonsingular settings. In the infinite-dimensional setting, both the entropic 2-Wasserstein distance and Sinkhorn divergence are Fréchet differentiable, in contrast to the exact 2-Wasserstein distance, which is not differentiable. Our Sinkhorn barycenter equation is new and always has a unique solution. In contrast, the finite-dimensional barycenter equation for the entropic 2-Wasserstein distance fails to generalize to the Hilbert space setting. In the setting of reproducing kernel Hilbert spaces, our distance formulas are given explicitly in terms of the corresponding kernel Gram matrices, providing an interpolation between the kernel maximum mean discrepancy and the kernel 2-Wasserstein distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.