Abstract

Transitions between ``glassy'' local minima of a model free-energy functional for a dense hard-sphere system are studied numerically using a ``microcanonical'' Monte Carlo method that enables us to obtain the transition probability as a function of the free energy and the Monte Carlo ``time''. The growth of the height of the effective free energy barrier with density is found to be consistent with a Vogel-Fulcher law. The dependence of the transition probability on time indicates that this growth is primarily due to entropic effects arising from the difficulty of finding low-free-energy saddle points connecting glassy minima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.