Abstract

Optimal design of heat exchanger performance is of the key issue in energy conservation. Based on the entransy theory, this study deduced the formula of entransy dissipation-based thermal resistance (EDTR) for different types of heat exchangers, analyzed the factors influencing heat exchanger performance and, more importantly, developed an alternative EDTR method for the design and optimization of heat exchanger performance. The results indicate that the EDTR of parallelflow, counterflow and TEMA E-type shell-and-tube heat exchangers have a general formula, which directly connects heat exchanger performance to heat capacity rates of fluids, thermal conductance and flow arrangement of heat exchanger without introducing any phenomenological non-dimensional parameter. From this formula, it is clear that there are three factors influencing heat exchanger performance, including finite thermal conductance, different heat capacity rates of hot and cold fluids, and non-counterflow arrangement of heat exchangers. Furthermore, based on the relation among heat transfer rate, arithmetical mean temperature difference and EDTR, the total heat transfer rate in a heat exchanger can be easily calculated by the thermal conductance of heat exchanger and the heat capacity rates of fluids. Therefore, the EDTR method can analyze, compare and optimize heat exchanger performance conveniently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.