Abstract

The aim of the present paper is to understand the interaction between a rising thermal and an inversion in the atmosphere and to quantify the turbulent entrainment rate due to a thermal impingement on a stratified interface. This problem was simulated in the laboratory using a water tank. The thermal is created by releasing a small volume of buoyant fluid into a stratified environment composed of two layers of different densities. A thin interface separates the lower layer from the lighter upper layer. The entrainment of upper layer fluid into the thermal is investigated using a passive dye flow visualization technique. The entrainment rate is found to obey a Ri−3/2 power law, as predicted by Cotel and Breidenthal [1997]. The effect of simulated evaporative cooling on the entrainment of a thermal impinging on a stratified interface is also investigated experimentally. Evaporative cooling in atmospheric clouds is simulated in the laboratory using alcohol‐water mixtures, so that the mixed fluid is denser than either parent parcel. This is realized in the laboratory by releasing a mixture of ethyl alcohol and ethylene glycol in an aqueous solution. It rises first through a relatively dense lower layer fluid and then impinges on a thin stratified interface, above which is a layer of relatively light fluid. The entrainment rate for values of the buoyancy reversal parameter D* between 0 and 0.5 was found to obey a Ri−3/2 power law. The entrainment rate is independent of D* between 0 and 0.5 for a range of Richardson numbers Ri from 3 to 25. This is consistent with the behavior of the buoyancy‐reversing thermal in an unstratified environment observed by Johari [1992].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.