Abstract

Question generation is a challenging task and has attracted widespread attention in recent years. Although previous studies have made great progress, there are still two main shortcomings: First, previous work did not simultaneously capture the sequence information and structure information hidden in the context, which results in poor results of the generated questions. Second, the generated questions cannot be answered by the given context. To tackle these issues, we propose an entity guided question generation model with contextual structure information and sequence information capturing. We use a Graph Convolutional Network and a Bidirectional Long Short Term Memory Network to capture the structure information and sequence information of the context, simultaneously. In addition, to improve the answerability of the generated questions, we use an entity-guided approach to obtain question type from the answer, and jointly encode the answer and question type. Both automatic and manual metrics show that our model can generate comparable questions with state-of-the-art models. Our code is available at https://github.com/VISLANG-Lab/EGSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.