Abstract
Heisenberg's uncertainty principle implies that if one party (Alice) prepares a system and randomly measures one of two incompatible observables, then another party (Bob) cannot perfectly predict the measurement outcomes. This implication assumes that Bob does not possess an additional system that is entangled to the measured one; indeed the seminal paper of Einstein, Podolsky and Rosen (EPR) showed that maximal entanglement allows Bob to perfectly win this guessing game. Although not in contradiction, the observations made by EPR and Heisenberg illustrate two extreme cases of the interplay between entanglement and uncertainty. On the one hand, no entanglement means that Bob's predictions must display some uncertainty. Yet on the other hand, maximal entanglement means that there is no more uncertainty at all. Here we follow an operational approach and give an exact relation - an equality - between the amount of uncertainty as measured by the guessing probability, and the amount of entanglement as measured by the recoverable entanglement fidelity. From this equality we deduce a simple criterion for witnessing bipartite entanglement and a novel entanglement monogamy equality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.