Abstract

Topological entanglement structure amongst disjoint torus boundaries of three manifolds have already been studied within the context of Chern-Simons theory. In this work, we study the topological entanglement due to interaction between the quasiparticles inside three-manifolds with one or more disjoint S2 boundaries in SU(N) Chern-Simons theory. We focus on the world-lines of quasiparticles (Wilson lines), carrying SU(N) representations, creating four punctures on every S2. We compute the entanglement entropy by partial tracing some of the boundaries. In fact, the entanglement entropy depends on the SU(N) representations on these four-punctured S2 boundaries. Further, we observe interesting features on the GHZ-like and W-like entanglement structures. Such a distinction crucially depends on the multiplicity of the irreducible representations in the tensor product of SU(N) representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.