Abstract

Stability and instability of quantum evolution are studied in the interaction between a two-level atom with photon recoil and a quantized field mode in an ideal cavity, the basic model of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of the atomic center-of-mass in the quantized field of a standing wave in the absence of any kind of interaction with environment. This kind of quantum instability manifests itself in strong variations of reduced quantum purity and entropy, correlating with the respective classical Lyapunov exponent, and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. The connection between quantum entanglement and fidelity and the center-of-mass motion is clarified analytically and numerically for a few regimes of that motion. The results are illustrated with two specific initial field states: the Fock and coherent ones. Numerical experiments demonstrate various manifestations of the quantum-classical correspondence, including dynamical chaos and fractals, which can be, in principle, observed in real experiments with atoms and photons in high finesse cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.