Abstract

This study measured the levels of polychlorinated dibenzo- p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), destroyed or formed in combustors and re-synthesized in cooling systems. For the proper control of PCDDs/PCDFs in municipal solid waste (MSW) incinerators, three grate-type MSW incinerators were selected, two of which had boilers, and one of which had a water spray tower (WST) as a cooling system. At the combustor outlets, dusts were in the range of 1640–4270 mg/S m 3 and PCDDs/PCDFs were in the range of 0.103–2.619 ng-TEQ/S m 3, showing the different values according to the grate structure of combustor and the flow direction of flue gas. After the flue gases passed through the cooling system, PCDDs/PCDFs at the waste heat boiler (WHB) outlets were enriched to levels that were 10.8–13.6 times higher than those at the furnace outlets, but PCDDs/PCDFs at the WST outlet was reduced to 5% of the level found at the furnace outlet. The emission patterns, such as the ratio of PCDFs to PCDDs, the ratio of gaseous-phase to particulate-phase PCDDs/PCDFs, and the compositional percentiles of each 2,3,7,8-substituted congener varied according to the types of air pollution control devices (APCDs). Reducing re-synthesis in the cooling system rather than enhancing the removal efficiencies of the APCDs seems to be more effective for lowering the levels of PCDDs/PCDFs in MSW incineration plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.