Abstract

A series of metal-organic frameworks composed of different metal ions and organic linkers were facilely synthesized and used as adsorbents for five diamide insecticides for the first time. Among them, MIL-101-NH2 performed much better than other materials due to extraordinarily high specific surface area, strong water stability, specific interaction with analytes. A sensitive method was developed with MIL-101-NH2 based dispersive solid phase extraction combining with liquid chromatography tandem mass spectrometry (dSPE-LC-MS/MS). Important parameters including adsorbent amount, enrichment time, elution solvent and volume, pH and salt effect were investigated to achieve the best enrichment efficiency. At selected conditions, the proposed method showed ultrahigh sensitivity with limits of detection low to 0.01–0.03 ng/mL, which was 2–3 orders of magnitude lower than reported methods. Wide linearity in the range of 0.03–1000 ng/mL (chlorantraniliprole, cyantraniliprole) and 0.1–2000 ng/mL (flubendiamide, cyclaniliprole, tetrachlorantraniliprole) were established with satisfactory coefficient of determination. The method was successfully used for analyzing of diamide insecticides in environmental water samples and flubendiamide was detected in several samples. This work demonstrated the first example of developing novel nanomaterials in trace amount diamide insecticide enrichment from practical samples, which opens a new perspective in establishing nanomaterial-based sample preparation method for diamide insecticide analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.