Abstract

Topological network motifs represent functional relationships within and between regulatory and protein-protein interaction networks. Enriched motifs often aggregate into self-contained units forming functional modules. Theoretical models for network evolution by duplication-divergence mechanisms and for network topology by hierarchical scale-free networks have suggested a one-to-one relation between network motif enrichment and aggregation, but this relation has never been tested quantitatively in real biological interaction networks. Here we introduce a novel method for assessing the statistical significance of network motif aggregation and for identifying clusters of overlapping network motifs. Using an integrated network of transcriptional, posttranslational and protein-protein interactions in yeast we show that network motif aggregation reflects a local modularity property which is independent of network motif enrichment. In particular our method identified novel functional network themes for a set of motifs which are not enriched yet aggregate significantly and challenges the conventional view that network motif enrichment is the most basic organizational principle of complex networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.