Abstract
Particle swarm optimization (PSO) is one of the most capable algorithms that reside to the swarm intelligence (SI) systems. Recently, it becomes very popular and renowned because of the easy implementation in complex/real life optimization problems. However, PSO has some observable drawbacks such as diversity maintenance, pre convergence and/or slow convergence speed. The ultimate success of PSO depends on the velocity update of the particles. Velocity has a significant dependence on its multiplied coefficient like inertia weight and acceleration factors. To increase the ability of PSO, this paper introduced an enriched PSO (namely ePSO), to solve hard optimization problems more precisely, efficiently and reliably. In ePSO novel gradually decreased inertia weight (as an alternative of a fixed constant value) and new gradually decreased and/or increased acceleration factors (meant for cognitive and social modules) is introduced. Proposed ePSO is used to solve four well known typical unconstrained benchmark functions and four complex unconstrained real life problems. The overall observation shows that proposed new algorithm ePSO is fitter than the compared algorithms significantly and statistically. Moreover, the convergence accuracy and speed of ePSO are also improved effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.