Abstract

The enolase from a highly fluoride-sensitive strain of Streptococcus salivarius and its fluoride-resistant mutant, as well as those from strains of Streptococcus sanguis and Streptococcus mutans with intermediate and low sensitivities to fluoride have been shown to be inhibited by fluoride. Comparisons of the purified, strain-specific enzymes showed a high degree of similarity for all preparations. The Michaelis constants for the substrate 2-phosphoglycerate were 1.3 x 10(-4) to 2.4 x 10(-4) M, pH optima were 7.3 to 7.7, and Mg2+ optima were 2 mEq/liter for all. Inhibition by fluoride required the presence of inorganic phosphate and was competitive in nature, and the calculated modified inhibition indices were found to be in the range from 3.3 x 10(-14) to 5.8 x 10(-14) M4. Percent inhibitions were determined under standardized conditions (0.16 mM NaF, 2 mM MgSO4, 0.5 mM Pi, and 0.5 mM 2-phosphoglycerate) and were found to range from 53.3 to 65.9% for all of the purified enzymes. The differences do not appear to be meaningful metabolically. Inhibition was reduced to about 14% at pH 6.0. From the similarities in the behavior of the strain-specific enzymes it is concluded that the differences in the glycolytic sensitivities of the different strains of streptococci to fluoride are not the consequence of any kinetic differences between the respective enolases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.