Abstract

Heat shock transcription factors mediate the regulation of the organism physiological maintenance and adaptation. We investigated the morphology and cellular expression of selected genes in brains of transgenic mice lacking the heat shock transcription factor 1, HSF1, the main transactivator under stress conditions. All HSF1 null mice displayed major brain morphological alterations: the lateral ventricles were markedly enlarged and the white matter reduced, as in ventriculomegaly. Heterozygous mice for the HSF1 gene also had these abnormalities albeit to a lower extent in comparison to the wild type, indicating a gene dosage effect. Cell loss, vacuolisation, amorphous eosinophilic cytoplasm and pyknotic nucleus were evident in the white matter, especially in periventricular regions. These areas also exhibited astrogliosis and neurodegeneration. The expression of heat shock protein hsp 27 was up-regulated whereas α B-crystallin was down-regulated in different areas of HSF1 null mouse brain in comparison to control mice. These data implicate HSF1 in maintaining the postnatal mammalian brain under non-stress conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.