Abstract

Reasonable doping is beneficial to the generation of defects, which is a feasibility strategy to improve the ZnO sensing performance. Herein, we presented an in situ self-sacrificing template strategy for fabricating Co doped h-ZnO core-shell structures (h-ZnO/ZnCox) with different defect contents, pyrolyzing hierarchical porous ZnO (h-ZnO) sub-microspheres coated by zeolite imidazolate frameworks (h-ZnO/ZIF-ZnCox). The investigations of X-ray photoelectron (XPS), photoluminescence (PL) and Raman spectra indicate that donor defects include zinc interstitial (Zni) and oxygen vacancy (VO) in h-ZnO/ZnCox can be tuned by Co dopant (x = 0–30%). Resultantly, the h-ZnO/ZnCox exhibits a significantly enhanced response and selectivity towards triethylamine (TEA), beyond the undoped h-ZnO, and 15% Co-doped h-ZnO (h-ZnO/ZnCo15%) conducts the maximum responses of 1020 to 50 ppm TEA at 573 K, in the top set for the similar type of sensors. Further, the sensing mechanism of h-ZnO/ZnCox is elaborated, possibly resulting from abundant active oxygen species conversed from more oxygen adsorbed which corresponds to cobalt doping generating rich donor-related defects and additional electrons in h-ZnO/ZnCo15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.