Abstract

Many computational problems in statistics can be cast as stochastic programs that are optimization problems whose objective functions are multi-dimensional integrals. The sample average approximation method is widely used for solving such a problem, which first constructs a sampling-based approximation to the objective function and then finds the solution to the approximated problem. Independent and identically distributed sampling is a prevailing choice for constructing such approximations. Recently it was found that the use of Latin hypercube designs can improve sample average approximations. In computer experiments, U designs are known to possess better space-filling properties than Latin hypercube designs. Inspired by this fact, we propose to use U designs to further enhance the accuracy of the sample average approximation method. Theoretical results are derived to show that sample average approximations with U designs can significantly outperform those with Latin hypercube designs. Numerical examples are provided to corroborate the developed theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.