Abstract

The detection of traffic signs in clean and noise-free images has been investigated by numerous researchers; however, very few of these works have focused on noisy environments. While in the real world, for different reasons (e.g. the speed and acceleration of a vehicle and the roughness around it), the input images of the convolutional neural networks (CNNs) could be extremely noisy. Contrary to other research works, in this paper, we investigate the robustness of the deep learning models against the synthetically modeled noises in the detection of small objects. To this end, the state-of-the-art architectures of Faster-RCNN Resnet101, R-FCN Resnet101, and Faster-RCNN Inception Resnet V2 are trained by means of the Tsinghua-Tencent 100K database, and the performances of the trained models on noisy data are evaluated. After verifying the robustness of these models, different training scenarios (1 – Modeling various climatic conditions, 2 – Style randomization, and 3 – Augmix augmentation) are used to enhance the model robustness. The findings indicate that these scenarios result in up to 13.09%, 12%, and 13.61% gains in the mentioned three networks by means of the mPC metric. They also result in 11.74%, 8.89%, and 7.27% gains in the rPC metric, demonstrating that improvement in robustness does not lead to performance drop on the clean data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.