Abstract

Luminescent down shifting (LDS) technique is one effective way to improve the poor response of multi-crystalline silicon (mc-Si) photovoltaic (PV) modules at short wavelength less than 400nm. Eu3+ complexes are effective LDS species for PV modules due to their large stokes’ shift and high luminescent quantum efficiency (LQE). Although Eu3+ complexes have been utilized in PV modules as LDS species widely, they have not been encapsulated into the pre-existing poly-ethylene vinyl acetate (EVA) layer of modules between glass and solar cell by now. The aim of our work is to enhance the performance of mc-Si PV modules by encapsulating high efficient Eu3+ complexes into their pre-existing EVA layers which would not modify the well-established manufacturing process for PV modules. In this work, two Eu3+ complexes with different absorption spectrum were encapsulated into the commercial EVA layer by soaking method for the first time and used in the encapsulation of mc-Si PV modules. Hereinto, Eu(TTA)3(TPPO)2 (TTA=2-thenoyltrifluoroacetonate, TPPO=triphenylphosphine oxide) (EuTT) with absorption spectrum less than 400nm and high LQE (0.73) improves the external quantum efficiency of mc-Si PV module from 0.05 to 0.20, which produces a 0.42% increases in its power conversion efficiency. In addition, it is found that the enhancement brought by Eu(TTA)3(TPPO)2 can reduce cost of power generated by mc-Si devices from US$1/Wp to US$0.98/Wp according to the calculation. Therefore, Eu(TTA)3(TPPO)2 as LDS species with high LQE and low cost is promising for enhancing the performance of mc-Si PV modules in practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.