Abstract
Abstract In the present study, the structural and electrochemical properties on Ni–CuCo2O4 (0 ≤ x ≤ 10 %) was studied for the use of active electrode materials in asymmetric supercapacitors prepared by a simple hydrothermal process. The synthesized material’s morphology shows that the nanosheets are assembled with an average diameter of about 50 nm, and the X-ray diffraction results show the spinel cubic structure with the space group of Fd-3mz (No. 227). CuCo2O4 electrodes exhibit a high specific capacitance for the electrodes because of the abundant redox reactions of Co2+/Co3+ and Co3+/Co4+, and Ni at the Co site has displayed exceptional charge-discharge and cyclic stability properties. The electrochemical studies show that the Ni doped CuCo2O4 electrode has the highest pseudocapacitive nature, with ultra-specific capacitances of 803 F g−1, 889 F g−1, 924 F g−1, and 1,086 F g−1 at 1 A g−1 respectively for pure, 2, 6, and 10 % Ni doped CuCo2O4 electrodes. Further, the excellent rate capability with 82 % capacitance retention and 92.3 % Coulombic efficiency were realized after 1,000 cycles. Moreover, the M-H study at room temperature showed paramagnetic behaviour. Additionally, the electrochemical and magnetic characteristics of the CuCo2O4 system is expected to improve as the doping quantity of Ni increased. This study may pave the way for enhanced properties of Ni doped CuCo2O4 for futuristic hybrid devices applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.