Abstract

The allocation of tasks to Autonomous Mobile Robots in a production setting in combination with the most efficient parking and charging processes are the focus of this paper. This study presents a simulative evaluation of the theoretical allocation methods developed in Selmair and Maurer (2020) combined with either hard or dynamic availability rules to ascertain the most efficient parameters of an Autonomous Mobile Robot System. In order to quantify this efficiency, the following Key Performance Indicator (KPI) were considered: number of delayed orders, driven fleet metres and the percentage of available Autonomous Mobile Robot as determined by their state of charge. Additionally, as an alternative energy source, a fast-charging battery developed by Battery Streak Inc. was included in this study. The results show that, in comparison to a conventional and commonly used trivial strategy, our developed strategies provide superior results in terms of the relevant KPI. • Material flow and efficient allocation of parking and charging stations of AMRs. • Novel strategies for charging & parking AMRs are introduced and evaluated. • Strategies are compared by means of a single controlled agent-based simulation. • New strategies are superior based on availability, delays, and traffic density. • Exploration of suitability of fast-charging alternative energy source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.